Fabricating nanoscale DNA patterns with gold nanowires.

نویسندگان

  • Yulin Chen
  • Sheng-Chin Kung
  • David K Taggart
  • Aaron R Halpern
  • Reginald M Penner
  • Robert M Corn
چکیده

Surface patterns of single-stranded DNA (ssDNA) consisting of nanoscale lines as thin as 40 nm were fabricated on polymer substrates for nanotechnology and bioaffinity sensing applications. Large scale arrays (with areas up to 4 cm(2)) of ssDNA "nanolines" were created on streptavidin-coated polymer (PDMS) surfaces by transferring biotinylated ssDNA from a master pattern of gold nanowires attached to a glass substrate. The gold nano-wires were first formed on the glass substrate by the process of lithographically patterned nanowire electrodeposition (LPNE), and then "inked" with biotinylated ssDNA by hybridization adsorption to a thiol-modified ssDNA monolayer attached to the gold nanowires. The transferred ssDNA nanolines were capable of hybridizing with ssDNA from solution to form double-stranded DNA (dsDNA) patterns; a combination of fluorescence and atomic force microscopy (AFM) measurements were used to characterize the dsDNA nanoline arrays. To demonstrate the utility of these surfaces for biosensing, optical diffraction measurements of the hybridization adsorption of DNA-coated gold nanoparticles onto the ssDNA nanoline arrays were used to detect a specific target sequence of unlabeled ssDNA in solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-templated nanowire fabrication.

DNA-based nanotechnology is a vibrant and expanding field. The specific molecular recognition properties and large aspect ratio of DNA make the molecule a promising template for bottom-up fabrication of nanowires and nanodevices. Fabricating well-defined DNA-templated nanowires requires aligned surface deposition and specific metallization of DNA molecules. DNA localization on surfaces has been...

متن کامل

Nanoscale, electrified liquid jets for high-resolution printing of charge.

Nearly all research in micro- and nanofabrication focuses on the formation of solid structures of materials that perform some mechanical, electrical, optical, or related function. Fabricating patterns of charges, by contrast, is a much less well explored area that is of separate and growing interesting because the associated electric fields can be exploited to control the behavior of nanoscale ...

متن کامل

Striped nanowires and nanorods from mixed SAMS.

We investigate the use of mixed self-assembled monolayers (SAMs) for creating nanoscale striped patterns on nanowires and nanorods. Our simulations predict that SAMs comprised of an equal composition of length-mismatched, thermodynamically incompatible surfactants adsorbed on nanowire surfaces self-organize into equilibrium stripes of alternating composition always perpendicular, rather than pa...

متن کامل

Enhanced plasmonic properties of gold-catalysed semiconductor nanowires.

A key challenge for the development of plasmonic nanodevices is their integration into active semiconducting structures. Gold-catalysed semiconductor nanowires are promising candidates for their bottom-up growth process that aligns a single gold nanoparticle at each nanowire apex. Unfortunately these show extremely poor plasmonic properties. In this work, we propose a way to enhance their plasm...

متن کامل

Physical and Electrical Performance of Vapor–Solid Grown ZnO Straight Nanowires

Physical and electrical properties of wurtzitic ZnO straight nanowires grown via a vapor-solid mechanism were investigated. Raman spectrum shows four first-order phonon frequencies and a second-order Raman frequency of the ZnO nanowires. Electrical and photoconductive performance of individual ZnO straight nanowire devices was studied. The results indicate that the nanowires reported here are n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 82 8  شماره 

صفحات  -

تاریخ انتشار 2010